3.8 Order Statistics

Suppose the times of arrival (arranged in order) are $T_{1}, T_{2} \ldots T_{N}$. Working out the probability of getting this set of data takes a little care; the chance of getting a datum less than t_{0} is of course zero. For brevity, introduce the Heaviside function

$$
\begin{align*}
H(x) & =1 \mathrm{x}>0 \tag{1}\\
& =0 \mathrm{x} \leq 0 \tag{2}
\end{align*}
$$

The probability of getting our set of data is proportional to

$$
\mathcal{L}=\prod_{i} H\left(T_{i}-t_{0}\right) \exp -\left(T_{i}-t_{0}\right)
$$

Viewed as a function of t_{0}, this product is zero for $t_{0}>T_{1}$ and has its maximum at T_{1}. Note that \mathcal{L} is not actually differentiable at T_{1}.
So an estimate of t_{0} is just T_{1}, the time of arrival of the first neutrino. This, despite appearances, does use all of the data because we have arranged $T_{1}<T_{2}<T_{3} \ldots$
Now use Eqn 3.17 to get the distribution of the minimum ($\mathrm{n}=1$ in that formula). The answer is simple:

$$
\operatorname{prob}\left(t_{1}\right)=N \exp -N\left(t_{1}-t_{0}\right)
$$

and the expected value

$$
\int t_{1} \operatorname{prob}\left(t_{1}\right) d t_{1}=t_{0}+\frac{1}{N}
$$

which means that this estimate of t_{0} is biassed, since it gives the wrong answer on average, but consistent, because it gets closer and closer to the right answer as we get more data.

